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COMMENT 

Energy level motion and a supersymmetric Hamiltonian 

W-H Steeb, S J M Brits and A J Van Tonder 
Department of Physics, Rand Afrikaans University, PO Box 524, Johannesburg 2000, South 
Africa 

Received 25 January 1988 

Abstract. From the eigenvalue equation HA1&,(A))= & ( A ) I $ " ( A ) )  where H A  = H o + A V  
one can derive an autonomous system of first-order differential equations for the eigenvalues 
& ( A )  and the matrix elements Vmn(A):= ($,,(A)lVl$"(A)) where A is the independent 
variable. To solve the dynamical system we need the initial values & ( A  = 0) and I$,,(A = 0)). 
Thus one finds the 'motion' of the energy levels & ( A ) .  We derive the equations of motion 
for the extended case HA = Ho+ A V ,  + A 2  V2 and give an application to a supersymmetric 
Hamiltonian. 

Pechukas [ l]  and Yukawa [2,3] discussed the 'motion' energy levels E,,(A) where A 
plays the role of the time. Let us assume that the eigenfunctions are real orthogonal. 
Using the orthogonality relation 

the completeness relation 

($,,(A) Iv) = 0 (3) 

and the assumptions that the eigenvalues are non-degenerate for A 20, these authors 
derived the following autonomous system of first-order ordinary differential equations: 

dE,,/dA = p n  (4a) 

where p,,(A):=($,,(h)lVI$,,(A)) and Vm,,(A):=($m(A)lVl$,,(A)) ( m #  n). Notice that 
equation (3) is no longer true if I G m ( A ) )  is complex orthogonal. If we have a finite- 
dimensional system with N energy levels then the number of differential equations n 
is given by n = N +  N + $ V ( N  - 1) = N ( + + $ N ) .  
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Pechukas [ 11 and Yukawa [2,3] discussed the dynamical system (4) in connection 
with quantum chaos (compare [4] and references therein). Moreover, Yukawa [3] 
showed that the system (4) admits a Lax representation and is completely integrable. 
Consequently, no chaotic behaviour can be expected for system (4). Nakamura and 
Lakshmanan [SI gave the equations of motion for the eigenfunctions, namely 

Steeb and Van Tonder [6,7] described the connection with the perturbation theory 
and considered the extended case HA = Ho + A ,  V ,  + A 2  V, .  Steeb and Louw [ 81 discussed 
energy-dependent constants of motion for system (4). The dependence of the survival 
probability as well as some thermodynamic quantities (free energy, entropy, specific 
heat) on A has been discussed by Steeb [9]. Let us note that Aizu [lo] had already 
described the parameter differentiation of quantum mechanical linear operators 25 
years ago. The results given above can be considered as a straightforward application 
of his results. Furthermore, we note that the system given above is related to the 
generalised Calogero-Moser system [5,11]. 

The question of whether or not energy levels can cross was first discussed by Hund 
[12]. He studied examples only and conjectured that, in general, no crossing of energy 
levels can occur. In 1929 von Neumann and Wigner [13] investigated this question 
more rigorously and found the following theorem. Real symmetric matrices (respec- 
tively the Hermitian matrices) with a multiple eigenvalue form a real algebraic variety 
of codimension 2 (respectively 3) in the space of all real symmetric matrices (respectively 
all Hermitian matrices). This implies the famous ‘non-crossing rule’ which asserts that 
a ‘generic’ one-parameter family of real symmetric matrices (or two-parameter family 
of Hermitian matrices) contains no matrix with a multiple eigenvalue. We emphasise 
that this no-crossing rule has only been proved for finite-dimensional matrices. ‘Gen- 
eric’ means that if the Hamiltonian admits symmetries the underlying Hilbert space 
has to be decomposed into the invariant subspaces. 

In some applications we also find different coupling within the interaction. For 
example, let 

Q := [ b  - A ( b +  b t ) ]c ’  (6) 

be the generator of a supersymmetric Hamiltonian [ 141, where b and c are boson and 
fermion annihilation operators. Then the Hamiltonian is given by 

where the braces denote an anticommutator bracket. The Hamiltonian can be written 
as HA = Ho+ V where 

Ho= c tc+  b i b  (8) 

V = -4Actca +2Aa - ha3 + A2a4 (9 )  

and 

where a = b t +  b. 
The equations of motion for the Hamiltonian 

HA = Ho+AV,+A2V2 (10) 
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can be derived taking into account the assumptions described above. We find 

dE,ldA = p n + A q n  (1 l a )  

where ~n ( A  := (+n ( A  11 1 +n ( A  1) and q n  ( A  ) := ( + n  ( A  )I v*l +n ( A  )>- 
Equations (1 1 a)-(  11 e)  cannot be applied to the Hamiltonian (7) since energy levels 

{Im)lo); 1m)c'lO); m = 0,1,2, . . .} (12) 

Im) := (m b')m IO). (13) 

are degenerate. A basis of. the underlying Hilbert space is given by 

where 

The matrix representation of the unperturbed Hamiltonian Ho is given by Ho= 
diag(0,1,1,2,2, .  . .). In order to apply ( 1 l a ) - ( l l d )  we have to decompose the Hilbert 
space owing to the symmetries. In the present case we find the invariant subspaces 
S1 = {Im)lO)} and S2 = {lm)ctlO)}. For the subspace with basis SI the matrix representa- 
tion of Ho is given by Ho = diag(0,1,2,. . .) and for the subspace with the basis S2 we 
find H,= diag(l ,2,3, .  . .). In these subspaces we can apply (1 l a ) - ( l l d ) .  We have 
calculated the 'A evolution' of 100 energy levels of the infinite matrix and taken into 
account the lowest 10 levels. For the range 0 G A S 0.5 no level crossings occur in both 
subspaces. 

Let us assume that the Hamiltonian (10) acts in a finite-dimensional Hilbert space 
2. The eigenvalues of HA satisfy the characteristic equation 

det( HA - E) = 0. (14) 
This is an algebraic equation of E of degree N =dim 2, with coefficients which are 
holomorphic in A. It follows from function theory that the roots of (14) are (branches 
of) analytic functions in A with only algebraic singularities. 
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